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Publishable Deliverable 7 

Summary 

 

Dear Reader, 

 

Thanks for your interest in HeartCycle 

 

This public document comprises the publishable progress and findings of the research within the 
Integrated Project FP7-216695 HeartCycle Compliance and effectiveness in HF and CAD closed-loop 
management. It is the second public report from the HeartCycle consortium where we give an 
overview of selected parts of our current work.  

 

Workpackage 1 (WP1) is progressing on the concept development and has been able to finalize the 
description of the application scenarios (use cases) we are going to address in HeartCycle. Our 
approach to further develop and enrich the HeartCycle disease management solution for Heart failure 
(HF) and Coronary Artery Disease (CAD) patients has been based on internal consulting with our 
medical experts, interviews, and workshops with patients and medical professionals to test and 
validate the HeartCycle concepts. 

  

Workpackage 2 (WP2) presents the ECG software module with algorithms to be used by the different 
sensor devices that is provided to the consortium partners.  

 

Workpackage 3 (WP3) ñMulti-parametric Analysis and Decision Supportò deals with the decision 
support system (DSS) and presents in this report on overview of models for treatment response.  

 

Workpackage 4 (WP4), dealing with the patient loop, is the workpackage to model, design, and 
develop the patient platform, which will provide the users with a system to self-manage their health 
status and to educate them to adopt a healthy lifestyle. Motivation will play a crucial role for 
addressing the compliance. In this report several interventions and models are discussed that should 
help the patient to increase patient empowerment and motivation towards his disease management.  

 

Workpackage 5 (WP5), dealing with the professional loop, provides an overview of the regulatory 
framework that applies in the countries that are subject to host trials for the HeartCycle project. The 
compilation of regulations has been organized in different sections: general, health record, 
telemedicine systems, electronic prescriptions and personal health data processing. Additionally, an 
outlook of the national strategy towards eHealth practices is given. Additionally, some technologies for 
careplan management are depicted. 

 

WP6 and WP7 have worked out the details what needs to be considered in terms of clinical studies, 
validations, and CE certification for the software and hardware modules to be developed or used in 
the HeartCycle validation phase. 

 

For more information, questions, or remarks please visit our website or contact me directly. I will than 
forward you to the respective experts in the HeartCycle consortium. 

 

Harald Reiter 

HeartCycle Project Manager 
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1 WP1  Concept creation and development process 

1.1 Concept creation 

HeartCycle starts from an application point of view, meaning that we first investigate, analyse, and 
validate the needs of patients and professionals for specific disease management solutions. The goal 
of the first year has been to identify and validate the requirements specifications of the HeartCycle 
concepts for coronary artery disease (CAD) and heart failure (HF). These requirements were 
generated iteratively through the consortium within the first 12 project months. A complete overview 
on the process used to define and focus the HeartCycle concepts is depicted in the figure below in 
more detail. 
 
 

 
Figure 1: The concept creation process in HeartCycle 
 

Starting from the HeartCycle description of work (DoW), the concept champions generated a first list 
of clarifying questions that were answered by all work packages. The refined scope for the HeartCycle 
concepts was then reported in deliverable D2.1. 

The 25 patient interviews and the subsequent patient workshop lead to a further refinement of the 
concepts, especially taking the needs of patients into account. In deliverable D4.1, the results of the 
workshop and the connected requirements list for the concepts were reported. 

The professional workshop, based on interviews with 13 nurses and physicians, lead to the 
identification of professional needs and complemented the picture of the patient workshop. The HF 
and CAD concepts were further refined. The results of interviews with nurses and physicians were 
analysed and the responses used to further concretize the concepts. The results of this workshop and 
the connected HeartCycle use cases are reported in detail in deliverable 7.1. 

 

Focusing the concepts resulted in 10 key use cases identified in the professional workshop that were 
further worked out in terms of detailed descriptions, sequence diagrams and an outline of key 
innovations contained. All work packages contributed to this process, which lead to an internal report 
on the HeartCycle use cases. In the HeartCycle board meeting in Valencia on 20.1.2009, the concept 
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champions presented the chosen use cases to the board, where it was agreed that the proposed 
cases should be the scope for the project to work on in the remainder of the project lifetime. 

Trough the iterative process chosen, it was ensured that all partners and work packages could 
contribute to the concept generation. The use of interviews with patients and professionals helped to 
identify the stakeholder needs and to ensure that HeartCycle delivers meaningful innovations that 
have the potential to improve the delivery of care to heart failure and coronary artery disease patients. 
 
With the requirement specifications finalized, the technical work packages in HeartCycle can start 
deriving specifications for the choice of technologies and subsequently develop first modules and 
integrate them into a first generation system.  
 

 

1.2 Development process 

Considering the clinical evaluations that the HeartCycle developments will pass, a sound 
development process is required. After analysing in depth the legal and standardisation requirements 
that that implies, the board have finally agreed on the meeting held in Valencia on January 20-21 on 
the HeartCycle development process for the technology that will be developed and integrated in the 
HeartCycle systems. The HeartCycle development process is shown in the figure below. 

: 

 

 

 

Figure 2: The HeartCycle system development process 

 

The system development process is inspired by professional software development best practices 
and based on the harmonised standard IEC 62304:2006 for Medical device software ïSoftware 
lifecycle processes. 
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Phases of the iterative HeartCycle development process 

The figure above represents the development process with the following steps: 

¶ Customer requirements specifications: The concept champions and the medical board define 
the customer requirements and the validation strategies for all the systems including the 
intended use environment and user needs. These requirements are detailed in this 
deliverable and will be the reference for the first iteration. 
 

¶ Project Management Plan: A more detailed plan is being developed in order to get the 
HeartCycle systems ready on time for the different agreed milestones. This task is lead by the 
system owners (concept champions) 
 

¶ System Requirements Specifications: Functional and non functional specifications of the 
HeartCycle systems, which are defined in parallel with the architectural design. The 
specifications are derived from a risk analysis based on EN ISO 14971:2007 (safety and 
security requirements) and describe in detail the ñexternal appearanceò of the systems, 
constructed as series of testable elements, which are parts of a traceability map. This task is 
lead by the technical manager. 
 

¶ Architectural design: Definition of the architecture of the HeartCycle systems, which is 
described in parallel to the SPRS. This task is lead by the technical manager. After this phase 
there is a design review control point performed by the project management. 
 

¶ Detailed Design Specifications: Design of the modules that integrate the products. This task is 
lead by the WP leaders. After this phase there is a design review control point performed by 
the project management. 
 

¶ Implementation and Debugging will be done at the WP development level following the 
software processes and using the agreed tools. This phase will be tested via code Inspection, 
walkthrough and unit Testing 
 

¶ Module integration will be done at the WP level following the tools and processes agreed by 
the HeartCycle software team. Integration tests ensure the quality of this stage. 
 

¶ System integration is done under the umbrella of WP5 with the leadership of the technical 
manager and following the integration tests. 
 

¶ Verification demonstrates conformance to specifications following a verification plan. This task 
is lead by the technical manager. 
 

¶ Confrontation demonstrates that user's needs have been met by direct discussions and tests 
with the users, as defined by the concept champions and the medical board. 
 

¶ Validation demonstrates that user's needs have been met in a clinical evaluation. 
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2 WP2:  ECG Module       
   provided by University of Coimbra 

This section describes the ECG algorithms that have been developed and implemented during the 
first phase of the HeartCycle project as was foreseen in the deliverable D2.2. These algorithms have 
been integrated and are available through a MATLAB ECG analysis algorithm toolbox. Specific 
interfaces, corresponding to each specific algorithm, are provided. Namely: 

¶ ECG segmentation and Intervals computation: relates to the identification of the main 

fiducial points, such as start and end of P wave, R peak detection, as well as relevant 

intervals computation, such as PR interval duration; 

¶ Premature ventricular contraction: identification of normal and abnormal beats; 

¶ Atrial fibrillation episodes detection; 

¶ Ventricular arrhythmias episodes detection, including ventricular tachycardia and ventricular 

fibrillation; 

¶ Heart rate variability analysis, including time domain, nonlinear and frequency domain 

parameters. 

¶ ST deviation: estimation of ST segment deviation at several different points. 

2.1 Algorithms 

2.1.1 ECG segmentation and intervals computation 

The ECG segmentation algorithm was based on morphology transform concepts. In particular, the 
algorithm proposed by Sun

1
 was implemented, which consists of a multi-scale morphological 

transform methodology. Using morphology analysis, the most important fiducial points have been 
determined, enabling to characterize the QRS complex, the P and T waves, as well as the relevant 
intervals based on those waves. 

Segmentation: P wave  P onset, P peak and P offset indexes; QRS complex: Q onset, Q peak, R 
peak, S peak and S offset indexes; T wave: T onset, T peak and T offset indexes. 

Intervals: RR, heart rate (bpm), PR interval, corrected QT interval, Q wave width, Q peak height, R 
peak height, QRS complex duration and corrected JT interval. 

2.1.2 Premature Ventricular Contractions 

Most of the algorithms reported in literature share the same characteristic: they are based on features 
derived from the QRS complex, independently from the surrounding ECG morphological 
characteristics. However, patients can exhibit several physical, clinical, and cardiac conditions, which 
can affect the ECG morphology in numerous ways. For example, a wide QRS complex may be 
considered normal in one patient, while it may suggest the presence of a Premature Ventricular 
Contraction (PVC) in another patient. Since most of the algorithms proposed in literature are based on 
unrelated features and classifiers are trained with limited datasets, correct identification of PVC events 
in patients with unexpected conditions can become a difficult task. The proposed algorithm 
approaches this problem by assuming that measurements extracted from PVC characteristics can be 
compared to normal, patient specific ECG beat characteristics and that these exhibit inter-individual 
resilience, i.e., in order to capture patient specific ECG characteristics, for each beat the 
measurements are compared with those extracted from the neighbouring beats.  

                                                   
1
 Sun Y., Chan K. L. and Krishnan S. M., ñCharacteristic wave detection in ECG signal using morphological transformò, BMC 

Cardiovascular Disorders 2005; 5:28 
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The PVC detection algorithm is based on morphological transform and information theory techniques, 
as well as on temporal characteristics such as the QRS wave length

2
. The proposed PVC detection 

module considers, for each beat classification, a comparative analysis using the ECG signal in close 
proximity to the current beat.  

2.1.2.1 Features 

The first four features are directly related to the characteristics of PVCs: R wave length, area and 
centre of mass of QRS complex, T wave deflection and amplitude, P wave absence and RR interval 
variability (see Figure 1).  
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Figure 1 Features extracted directly 
connected to ECG characteristics. 

Figure 2 Comparison of amplitude 
differences between normal beats and PVCs 
morphologic derivatives. 

The next two features are related to the characteristics of the waves that precede/succeed the QRS 
complex under analysis. When a PVC occurs it is observed that the T wave after the respective QRS 
exhibits a more elevated peak with opposite curvature to the main deflection of QRS complex (see 
see Figure 1). On the other hand, no P wave precedes the PVCsô QRS complex. The amplitude of 

each T wave is compared with the average amplitude ( peakT ) of all T waves inside the analysis 

window, resulting in the feature described in (6).  
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Since P waves are difficult to identify and to discriminate in an ECG, a template-based approach is 
followed to assess its presence. First a model is extracted by averaging all annotated P waves found 

in the QT Database from Physionet. Let waveP  be the aforementioned model and let waveP  be the P 

                                                   
2
 Couceiro, R., P. Carvalho, J. Henriques, M. Antunes, On the Detection of Premature Ventricular Contractions, EMBC -2008, 

30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada, August 
20-24, 2008. 
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wave under analysis. The existence of a P wave is assessed by eq. (7) using the correlation 

coefficient between waveP  and waveP . 

 

( ) ( ( ), )= wave wavecc i corrCoef P i P  (7) 
7( ) max( ) ( ),        1,...,= - =f i cc cc i i nbeats (8) 

 

One of the main characteristic of a PVCs is its premature occurrence. Therefore a feature relating the 
RR interval lengths of heart cycles adjacent to the PVC was used. 
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The remaining features have been defined using feature extraction methods based on the 
morphological derivative, spectral and information content. Two features are based on the ECG 
signalôs morphological derivative. It is observed that PVC complexes exhibit lower slop before or/and 
after each R peak. The slop from the Q peak to the R peak can be measured by calculating the 
morphological derivativeôs peak amplitudes in this segment (QRamp, see Figure 2).  Analogously, the 

slop after the R peak can be represented by the amplitude of the RS peak segment (RSamp). An 

approximation to the normal beat R wave left and right slops can be estimated by calculating the 

averages of QR and RS amplitudes. Let these be ampQR  and ampRS , respectively. The relations 

between QRamp and ampQR , and the relation between RSamp and ampRS  provide two original features: 
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Chick et al.
3
 proposed that the QRS complexesô morphology differences between PVCs and normal 

beats might be evaluated using frequency spectrum signatures. Namely, PVC spectrums tend to be 
more concentrated in lower frequencies, while spectrums from normal beats tend to be more 
dispersed. The following features are based on this observation. The entropy of each normalized 
QRS spectrum assesses the concentration of each spectrum. The logarithmic comparison between 

the entropy (H) and the average of all entropies ( H ) leads to the feature given by eq. 12. Another 

feature is calculated using the KullbackïLeibler divergence ( H ) between every normalized spectrum 

(Sp) and the average of all spectrums ( H ). This feature expresses the similarity between each 
spectrum and a spectrum that is an approximation of a normal QRS complex spectrum. 
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3
 Chick, M, N. Gbelgacem and F. Reguig; ñThe use of artificial Neural networks to detect PVC beatsò, Lab. de G®nie 
Biom®dical. D®p. dô®lectronique, Univ. Abou Bekr Belkaµd, 2003. 
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2.1.2.2 Classifier 

The proposed classifier consists on a three layer (thirteen-twelve-six-one) feed-forward neural 
network, trained with the Levenberg-Marquardt algorithm. Normalization of the input feature vector 
has been performed in order to fit into the dynamic range of the used log-sigmoid transfer function. 

2.1.3 Atrial Fibrillation 

The AF detection algorithm is inspired on the analysis of the three main physiological characteristics 
of AF: i) P wave absence ii) heart rate irregularity and atrial activity (AA).  

2.1.3.1 Features 

The absence of P waves during the fibrillation event before the QRS complexes is an important 
characteristic of AF episodes. Although ECG segmentation methods can be very accurate in the 
detection of ECG fiducial points, it is observed that these algorithms tend to breakdown for the 
detection of P waves during AF episodes. To avoid these misclassification errors, a template-based 
approach is proposed. First a model is extracted by averaging all annotated P waves found in the QT 
Database from Physionet. The existence of a P wave is assessed by the correlation coefficient 
between the P wave candidate and the P wave template (eq. 7), as used in the PVC detection.

 
The 

rate of P waves in each window is accessed by relating the number 
SN  of selected P waves (P waves 

whose index S is greater than 0.2) and the number 
CBN  of cardiac beats. 

 

S
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N
R

N
=  (16) 

 

The second class of features relates to the variability of the RR interval. Basically, the R-R interval 
sequence is modelled as a three-state Markov process being each interval classified as one of the 
three states (S-short, R-regular or L-long). Intervals are called short if they do not exceed 85% of the 
mean interval duration, long if they exceed 115% of the mean interval duration, and regular otherwise. 
Thus, the RR interval sequence can be assumed as a stationary first-order Markov process, 
characterized by its state transition probability matrix. The regularity of heart rate is characterised by 
the probability of transition from state R to itself (described by eq. 17), since this transition is more 
likely to occur when the RR intervals present approximately the same length

4
. It should be noted that, 

in order to perform this analysis, first PVCs are identified and eliminated. 
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Using this approach it is possible to determine the similarity between a probabilistic distribution under 
analysis and a model that represents AF episodes. Based on MIT-BIH Atrial Fibrillation database, a 

model for the AF episode probability distribution (defined by ( , )AFP x y ) was extracted. Using Kullbackï

Leibler divergence (
KLD ) the similarity between the distribution ( , )AFP x y  and the distribution under 

analysis ( ( , )P x y ) is evaluated, as given by eq. 18. 
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The last class of features is based on the atrial activity analysis.  AF episodes are characterized by a 
fibrillatory wave with specific frequency between 4 and 10 Hz. To obtain a valid frequency domain 
characterization of AF episodes it is needed the extraction or cancellation of the signal components 

                                                   
4
 Moody B. G. and Mark R. G., ñA new method for detecting atrial fibrillation using R-R intervalsò, IEEE Computers in 

Cardiology 1983. 
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associated to ventricular activity (VA), that is, the QRS complex and the T wave (QRST). For this 
propose, the methods reported by Senhadj et al. 

5
 and Sanchez et al.

6
  have been followed. The 

QRS-T cancellation is conducted in the frequency domain by excluding the values corresponding to 
the QRS-T segments and the values above a predefined threshold. This approach guaranties the 
minimization of the influence of miss-segmented QRS-T complexes in the cancelled signal. Spectral 
analysis is performed on the residual ECG signal using a Fast Fourier Transform. Once the frequency 
spectrum has been calculated, it should be parameterized in order to find specific characteristics for 
AF episodes. The two main characteristics of AF episodes, observed in the frequency spectrums, are 
the concentration around the main peak, which is positioned in the interval [4, 10] Hz. The 
concentration of each spectrum is assessed by calculating the entropy of each normalized cancelled 
ECG window spectrum. Based on the spectrums extracted from the MIT-BIH Atrial Fibrillation 

database, an AF specific spectrum model has been extracted. Let ( )P x  be the spectrum under 

analysis and ( )Q x  be the aforementioned model. The similarity between ( )P x  and ( )Q x  is related to 

the likelihood of the time window under analysis to be an AF episode. This similarity is evaluated by 

the KullbackïLeibler divergence (
KLD ) between the two distributions. This feature is described by eq. 

(19).  
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2.1.3.2 Classifier 

In order to detect AF events, the extracted features have been considered as inputs to a neural 
network classifier, that categorizes each window of ECG data into two classes: with/without AF.  

2.1.4 Ventricular Arrhythmias 

For the identification of ventricular arrhythmias (VT-ventricular tachycardia and VF-ventricular 
fibrillation) two algorithms have been developed and implemented. The first one consists of three 
independent neural networks, designed for specific detection tasks: signal quality (Noise), ventricular 
tachycardia (VT) and ventricular fibrillation (VF)

7
. Time and frequency domain features, obtained from 

the electrocardiogram (ECG) form the inputs of these neural modules. The outputs of these neural 
models feed the a second layer, which consists of a global classifier providing the global result of VA 
module. The second algorithm proposes a non-linear dynamic signal processing approach to address 
the problem

8
. Based on the phase space reconstruction of the ECG, some features are extracted for 

each ECG time window. Features from the current and the previous time windows are provided to a 
dynamic neural network classifier, enabling arrhythmias detection. 

2.1.4.1 Algorithm 1: Features 

The selection of the most relevant features for VT and VF discrimination was performed through a 
correlation analysis procedure. This approach took into consideration a set of available features found 
in literature and developed within this work and their dependency with respect to the desired task. 
Concerning temporal domain markers, five morphological features were chosen. These represent 
information about the shape of the ECG signal: 

                                                   
5
 Senhaji L., Wang F., Hernandez A. I. and Carrault G., ñWavelets Extrema Representation for QRS-T Cancellation and P 
Wave Detectionò, IEEE Computers in Cardiology 2002; 29:37-40. 
6
 Sanchez C., Millet J., Rieta J. J., Castells F., Ródenas J., Ruiz-Granell R. and Ruiz V., ñPacket Wavelet Decomposition: An 
Approach for Atrial Activity Extractionò, IEEE Computers in Cardiology 2002; 29:33-36.   
7
 Henriques, J., P. Carvalho, P. Gil, A. Marques, T. Rocha, B. Ribeiro, M. Antunes, R. schmidt, J. Habetha, Ventricular 

Arrhythmias Assessment, EMBC-2007, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society, Lyon, France, August 23-26, 2007. 
8
 Rocha, T., S. Paredes, P. Carvalho, J. Henriques, M. Antunes, Phase Space Reconstruction Approach for Ventricular 

Arrhythmias Characterization, EMBC-2008, 30th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society Vancouver, Canada, August 20-24, 2008. 
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i) Percentage of time above or below thresholds is defined as the relative amount of time of beat 
peaks, which are above a high threshold or below a low threshold

9
. This parameter is a characteristic 

of the temporal ECG morphology: a normal ECG presents a very small PTABT and a ventricular 
tachycardia/fibrillation exhibits a larger value of PTABT. 

ii) Another feature was based on an algorithm presented by Jekova and Krasteva
10

. Following this 
approach, a particular band pass digital filter is applied to the original signal. Then, from the filtered 
signal a set of time domain parameters are extracted, enabling the rhythm classification. 

iii) A feature comparable to the heart rate was extracted. This feature employs a nonlinear transform, 
derived from multiplication of backward differences (MOBD), providing an estimation of extreme 
variations in the ECG

11
.  

iv) Another feature was obtained from a two dimensional phase space reconstruction diagram, a tool 
able to identify chaotic behaviour of signals. Fundamentally, if the signal is non-chaotic (normal sinus 
rate), the curve in the phase space diagram showing a regular form is concentrated in a restricted 
region of the plot. However, a chaotic signal (VT/VF) produces a curve that is uniformly distributed 
over the entire diagram. 

v) For detection of abnormal signal amplitudes and slopes, appropriate markers were implemented. 
These markers were evaluated inside a specific window (10 seconds) by assessing the portions of 
small and high derivatives in the ECG signal: i) the number of points close to the baseline where the 
derivative is small (signal is almost horizontal) and ii) the number of points where the derivative is high 
(signal is almost vertical). The baseline (bLine) as well as the respective derivative (dLine) was found. 
The number of points close to the baseline (horizontalP) and the number of points, where the 
derivative is high (verticalP) were computed. Variables lowT, highT and baseT define three 
thresholds, which are established based on the amplitude of the ECG signal. The number of points 
(horizontalP and verticalP) is evaluated for every window and allows the estimation of the time interval 
where the signal is almost horizontal or vertical. 

Regarding frequency features, those were based on spectral power distribution. Basically, frequency 
domain energy contain in different frequencies were used as an approach for characterizing and 
classifying ECG signals. The PSD was evaluated by windowing segments of the time signal domain 
and computed using the Welchôs method. 

2.1.4.2 Algorithm 1: Classifier 

A global classifier implemented using an ANFIS (Adaptive-Network-Based Fuzzy Inference System) 
scheme forms the final stage of the proposed algorithm platform. This classifier performs the decision-
making, based on the outputs of the simple two-class NN classifiers applied for each ventricular 
arrhythmia, deciding on whether the current signal is a normal or abnormal signal, i.e. if it is NSR, 
PVC, VT or VF.  For this classifier, a hybrid learning algorithm was implemented, combining the 
subtractive clustering technique with the least-squares method. Subtractive clustering has been 
utilized to partition the training sets and to generate the structure, i.e., to determine the number of 
rules and membership function parameters (the membership functions of the input fuzzy sets were 
selected in the form of Gaussian functions). The parameters (weights) associated with the 
membership functions were tuned using the least square method. 

2.1.4.3 Algorithm 2 ï Phase Space Reconstruction 

The algorithm is evaluated by windowing segments of the ECG under analysis considering, for each 
window, a phase space reconstruction procedure. Then, from the obtained two-dimensional trajectory, 
some relevant features are extracted. Features from current and previous windows are provided to a 
time delay neural network classifier (TDNN), enabling the characterization of VA. For the decision 
system four features have been considered. The first, spatial filling index, has been successfully 
employed to distinguish NSR from VT and VF

12,13
. The other three features, exclusively developed 

                                                   
9
 Tian, L. and J. Tompkins; ñTime domain based algorithm for detection of ventricular fibrillationñ, Proceedings of the 19 Int. 

Conference IEEE/EMBS Oct 30-Nov 2, Chicago, USA, 1997. 
10

 Jekova I., and V. Krasteva; ñReal time detection of ventricular fibrillation and tachycardiaò, Physiol. Meas. 25, 1167ï1178, 
2004. 
11

 Kunzmann U, G. Schochlin and A. Bolz; ñParameter extraction of ECG signals in real-timeò. Biomed Tech (Berl). 4, 2:875-8, 
2002. 
12

 Tratnig, R., ñReliability of new Fibrillation Detection algorithms for Automated External Defibrillatorsò, PhD Dissertation, 
Technische Universit¨at Graz, 2005. 
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within this work, exploit the distribution characteristics of the reconstructed phase space trajectory. 
Phase space reconstruction is a technique used to represent the non-linear characteristics of a 
dynamic system, consisting of a simple plot of signal time-lagged vectors

14
. Considering the signal as 

a time series x(1), x(2), é, x(n), where n is the number of points, the time lagged vectors of the 
multidimensional phase space are determined according to eq. 20.  

 

( 1)...i i i dXi x x xt t+ + -
è ø=ê ú1  ...  ( 1)i n d t= - - (20) 

 

where t is the time delay between the points of the time series, and d is the embedding dimension 
which corresponds to the number of phase space coordinates. The PSR is carried out by plotting the 
original signal against the delayed versions of itself. The present work uses a two-dimensional PSR 

(d=2) and a time delay t equal to 7, which was established as a suitable choice in the case of ECG 

signal
14

. As it can be seen in Fig 3, the PSR (t=7) has the capacity to distinguish between the three 
types of signals: NSR, VT and VF. In fact, the shape of the trajectories is clearly distinct for each 
case. 

 

 

 

 

 

Figure 3 PSR for NSR, VT and VF signals. Figure 4 C matrix column 

averages: NSR (½), VF(»), VT(---). 

2.1.4.4 Algorithm 2 ï Features 

Spatial filling index: The first step to determine the spatial filling index is to reconstruct a two-
dimensional phase space of the ECG signal. Given the ECG signal x(1), x(2), é, x(n), the A matrix is 
obtained as eq. 21. 
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Dividing each element (i,j) of matrix A by q=max| x(k) | (1ÒkÒn), a normalized matrix B is obtained. In 
two dimensions, the phase space plot corresponding to B matrix ranges from -1 to +1 on either axis. 

This phase space area is divided into small square areas of size R³R, originating N=2/R grids (being 

2/R an integer number). The phase space matrix C (dimension R³R), is determined with each 
element C(i,j) equal to the number of phase space points falling into the grid g(i,j). A new matrix P is 
obtained, dividing each element of C by M, given by eq. 22. 

                                                                                                                                                                     
13

 Faust, P., R. Acharya, S. Krishnan, L. Min, ñAnalysis of cardiac signals using spatial filling index and time-frequency domainò, 
BioMedical Engineering OnLine, 3:30, 2004. 
14

 Krishnan, S., D. Dutt, Y. Chan, V. Anantharaman, ñPhase Space Analysis for Cardiovascular Signalsò, Advances in Cardiac 
Signal Processing , Chap 15, 339-354, Springer, 2007. 
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Each element P(i,j) represents the probability that a phase space point falls into the grid g(i,j). 
Squaring each element of P, the R matrix is determined. Being S the sum of all points of R, the spatial 

filling index (h) is finally obtained as eq. 23. 

 

2

S

N
h=  (23) 

 

Standard deviation of the curve of C column averages: Taking the average of each column of C 
matrix, a curve characterizing the distribution of points in the phase space is obtained, inspired by the 
idea of Radon transform

15
. Figure 4 depicts examples of these curves, for the NSR, VT and VF signal 

types, revealing their discrimination capacities. The second feature is the standard deviation of the 
curve. 

Area of the curve of C column averages: The third feature is the percentage of area in the 
extremities of the curve of C column averages. From Figure 4, it is clear that the area under this curve 
can be used to distinguish between ECG signal types. As seen, for VT signals, the area under the 
curve near the extremities is higher than in the other cases. 

Ellipse based feature: The fourth feature is based on the phase space points distribution. As it is 
depicted by Figure 3, in the NSR case, the distribution of the points is concentrated on a centre; in the 
VT case, the points are grouped in an elliptic shape; in the VF case, the points are randomly 
distributed (by the interior, the border and the exterior of the ellipse). The number of points in each 
one of these regions (centre, border and remaining) is used to discriminate the signals. Given a 
representation of a signal in the phase space the method proposed by

16
 is used for fitting ellipses to 

scattered data.  

2.1.4.5 Algorithm 2: Classifier 

The classifier consists of a dynamic neural network (time delay neural network), where the number of 
hidden neurons has been determined experimentally (10): small enough for fast training and 
generality, but sufficiently large to give adequate accuracy. The parameters (weights and bias) that 
characterize the NN, have been trained using the Levenberg-Marquardt algorithm. 

2.1.5 Heart Rate Variability 

Various measures of heart rate variability have been proposed in literature, which can generally be 
subdivided into time domain, frequency domain and non-linear measures. The algorithms 
implemented here to determine these measurements follow common approaches found in 
literature

17,18
 and no special effort was made to derive new measurements. It is expected that HRV 

analysis will be profoundly improved by integrating the work that is being carried out by the partners 
from POLIMI. Currently the following parameters are available:  

Time Domain: mean: mean of RR intervals; SDNN standard deviation of RR intervals; SDSD 
standard deviation of the differences between heart beats (DHB); RMSSD root mean square of the 
DHB; NN50 number of RR intervals that fall within 50 milliseconds; pNN50 percentage of total NN50. 

                                                   
15

 Deans, S., ñThe Radon Transform and Some of Its Applicationsò, New York: Wiley, 1983. 
16

 Fitzgibbon, A., M. Pilu, R. Fisher, ñDirect Least Square Fitting of Ellipsesò, Pattern analysis and machine intelligence, 21, 5, 
1999. 
17

 Niskanen, T., M. Tarvainen, P. Ranta-aho, A. Karjalainen, Software for advanced HRV analysis, University of Kuopio 
Department of Applied Physics Report Series ISSN 0788-4672, 2002. 
18

 Tarvainen , M, Niskanen, J: Kubios HRV Analysis, version 2.0 beta, University of Kuopio, Kuopio, Finland, 2006. 
(http://bsamig.uku.fi/). 
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Frequency domain: PSD frequency content (Burg and Welch method are available); pVL percentage 
of very low frequency content [0 - 0.04]; pLF percentage of low frequency content [0.04 - 0.15]; pHF 
percentage of high frequency content [0.15 - 0.40]; rLF ratio pLF/pHF. 

Nonlinear: FApen approximate Entropy (ApEn) of a signal; Poincaré plot: Poincaré plot fits heart rate 
data points to an ellipse that is fitted to two intersecting lines, SD1 and SD2. 

2.1.6 ST deviation 

The algorithms implemented to evaluate ST segment deviation follow basically two stages. First, the 
ECG signal is broken into cardiac cycles and a baseline removal process is applied to each individual 
interval. The main goal of this step is to guarantee that the isoelectric line is coincident with the zero 
line to facilitate ST segment shift evaluation. The second stage involves several measures of the 
aimed deviation. In effect, the literature shows a great variety of approaches to assess this ECG 
feature. Four measurements of ST deviation are available. This way, the person analyzing the ST 
segment deviation, has three different values to support decision making. The first three were chosen 
from literature, whose details are presented below, and make use of the ECG segmentation method 
presented in section 2.1.1. A new algorithm was developed and implemented based on the Wigner 
Ville transform.  

2.1.6.1 Baseline removal 

Based on R peaks localization, the entire ECG signal is broken into cardiac cycles using the average 
of the distances between consecutive R peaks. Each cardiac cycle is then submitted to a process of 
baseline removal using Wolfôs

19
 method. This method starts to determine the initial and final heights 

(H1 and H2) of the interval, using the average of the first five samples and the average of the last five 
samples, respectively. Then, the line segment connecting H1 to H2 is subtracted from the ECG, 
originating a corrected signal in terms of baseline.  

2.1.6.2 ST segment deviation measurement 

The first algorithm, proposed by Akselrod et al
20

, measures ST amplitude in the point localized 104 ms 
after the R peak. The second algorithm, introduced by Taddei et al.

21
, considers ST deviation 80 ms 

after the J point or, in case of sinus tachycardia (heart rate > 120 bpm), 60 ms after the referred point. 
This approach has the disadvantage of depending on the accuracy of J point detection. The third 
method, introduced by Pang et al.

22
, measures ST segment deviation in a point that depends on heart 

rate, according to the following table. 

 

Heart Rate ST Segment Deviation Measuring Point 

HR Ò 100 R + 120 ms 

100 < HR Ò 110 R + 112 ms 

110 < HR Ò 120 R + 104 ms 

HR > 120 R + 100 ms 

 

It is recognized that time-frequency methods are especially adequate for the detection of small 
transient characteristic hidden in the ECG, such as the ST segment. Based on this observation we 
developed another approach for the estimation of ST deviation using the Wigner-Ville transform. The 
Wigner-Ville distribution is a time-frequency representation that considers a time analytical signal. 
Regarding the ECG, the equivalent analytic signal of the initial real signal x(n) was obtained by adding 
to the real signal its Hilbert transform H[.] as the imaginary part, eq. (24) 

                                                   
19

 Wolf, A, Automatic Analysis of Electrocardiogram Signals using Neural networks, (in Portuguese), PUC-Rio, Ms. Thesis, nº 
0210429/CA2004. 
20

 Akselrod, S., Norymberg, M., Peled, I., Karabelnik E., Green, M. S. (1987). ñComputerised Analysis of ST Segment Changes 
in Ambulatory Electrocardiogramsò, Medical and Biological Engineering and Computing, v. 25, p. 513-519. 
21

 Taddei A, Distante G, Emdin M, Pisani P, Moody G B, Zeelenberg C and Marchesi C, The European ST Database: standard 
for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography Eur. Heart J. 13 1164ï72, 1992. 
22

 Pang L, Tchoudovski I, Bolz A, Braecklein M, Egorouchkina K and Kellermann W 2005 Real time heart ischemia detection in 
the smart home care system 27th Annu. Int. Conf. Eng. Med. Biol. Soc., 2005. IEEE-EMBS 2005 
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[ ]( ) ( ) ( )= +y n x n jH x n
 (24) 

 

The basic idea followed here consists in the division of the time frequency map into characteristic 
areas and, within each specific area, to perform the evaluation of particular characteristics. With 
respect to the ST estimation, two time bands and one frequency band was considered. Regarding the 
time band, the areas considered were those on the left (isoelectric line) and on the right (ST segment) 
of the R peak (assumed to be previously determined). For each time band it is expect to determine 
regions were there is no signal activity (isoelectric line, interval between the end of P wave and the 
begin of QRS complex, and ST segment, interval between the end of QRS complex and the begin of 
T wave). Thus, for those time bands, high frequency band were considered and, in particular, the 
region where high frequency components presents minimum values. Figure 5depicts this idea, were 
an electrocardiogram and its corresponding high time-frequency components are shown (between 0.5 
and 1.0, half of the normalized range). By evaluating the minimum of the sum of the high frequency 
components in each time band, isoelectric and J points can be obtained. Having determined these 
points, the ST deviation is straightforward estimated as the difference between J and isoelectric 
values. 
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Figure 5 Example of and electrocardiogram and the corresponding high frequency 
components (Wigner-Ville transform). 

2.2 Validation 

2.2.1 ECG segmentation and intervals computation 

The ECG segmentation algorithm validation has been performed using all 105 records from MIT-QT 
Database. Record lead configurations most similar to MLII have been chosen for testing the algorithm. 
Table 2 shows the SE-sensibility and PP-positive predictivity results regarding ECG segmentation and 
intervals computation. 

 

 
P 

waves 

R 

peaks 

T 

waves 

SE 88,09 99,30 96,83 

PP 91,27 99,80 96,33 

Table 2 

2.2.2 PVC 

The PVCsô detection algorithm validation has been performed using 46 of 48 MIT-BIH database 
records. Non MLII lead configurations records have been removed from the training and testing 
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datasets, preserving coherence in the morphological characteristics of ECG records. 1965 PVCs and 
11250 normal QRS complexes from the aforementioned dataset, compose the training dataset. 
Validation was performed using all dataset records. The SE-sensibility and SP-Specificity values 
achieved results are presented and compared in Table 3 with state of the art algorithms.  

 

  SE SP 

PVC detection 96,35 99,15 

Table 3 

2.2.3 AF 

To validate the proposed AF detection algorithm, 23 records from MIT-BIH Atrial Fibrillation were used 
(lead MLII). Respectively 19161 and 29893 windows of 12 seconds, corresponding to AF and non AF 
episodes, compose the training dataset. Validation has been performed using all 23 dataset records 
(238321 and 59785 AF and non AF episodes, respectively). The results obtained by the proposed 
algorithm are presented in Table 4. 

 

  SE SP 

AF detection 93.8 96.09 

Table 4 

2.2.4 Ventricular Arrhythmias 

The performance of the two algorithms for PVC detection (MIT) as well as for noise, VT and VF 
(MIT/MVA/CVT) detection are presented in Table 5. A data base of 51 signals was created, involving 
the three ECG signal classes (normal sinus rhythm, VT and VF). For MVA and CVT data sets, the 
number of windows was 420 (35 minutes) and 102 (8.5 minutes), respectively. 

 

 VT/VF 

  MIT MVA CVT ALL 

SE  
Algorithm 1 99.7 90.7 91.8 89.3 

Algorithm 2  95.1 92.8 92.3 

SP 
Algorithm 1 98.8 95.0 96.9 94.1 

Algorithm 2  98.7 96.4 98.2 

Table 5 

As seen from the results in Table 5, the detection results are higher when considering independently 
each database. Applied to all databases the method has a sensitivity of 89.3% and specificity of 
94.1%. Moreover, the highest result was obtained with the MIT records. This fact can be justified, 
since MIT records are mainly composed of regular signals with some PVCs and VTs. The 
performance of the phase space algorithm, presents superior results. Applied to all databases the 
method has a sensitivity of 92.3% and specificity of 98.2%, revealing its capacity to perform detection 
tasks. 

2.2.5 ST deviation 

A truly validation process could not be done. In fact, the available databases in this area, namely, the 
European ST-T Database and the Long-Term ST Database, were created to be used for evaluation of 
algorithms that detect or differentiate between ischemic ST episodes, axis-related non-ischemic ST 
episodes, etc. This is not the case of the present algorithm, which only considers discrete values of 
the ST segment deviation without further processing. For this reason, a correlation analysis was 
carried out. The average results obtained are presented in the Table 6. 
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Method 
Correlation 

coefficient 
Records 

Taddeiôs method 0.512 
'e0105','e0213','e0403','e0107','e0305','e0405','e0111', 
'e0409','e0113','e0411','e0115','e0119','e0413','e0121', 
'e0415','e0127','e0501','e0123','e0129','e0515','e0125', 
'e0417','e0139','e0601',ôe0147','e0603','e0151','e0607', 
'e0605','e0159','e0609',óe0163','e0161','e0203','e0817', 
'e0613','e0205','e0615','e0207','e0801','e0303','e0211', 
'e0103','e0305', 

Pangôs method 0.575 

Akselrodôs method 0.576 

Wigner Ville 0.546 

Table 6 
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3 WP3:  Models of Treatment Response    
  provided by University of Thessaloniki 

3.1 Overview 

Mathematical modeling of a drug can be used to observe how the concentration of a drug in the body 
changes with time or how for example blood pressure changes over time following the administration 
of a drug that is designed to reduce blood pressure. There are two possible approaches for drug 
modeling (Cobelli & Carson, 2008).  

The first approach also termed data-driven modeling relies on the available drug-related data 
collected on the system. Essentially, mathematical descriptions of data derive from experimental data 
and correspond to the underlying physiology. This type of mathematical modeling is particularly 
suitable when the knowledge of the underlying physiology is deficient and learning these mechanisms 
is not prioritized.  

The second type of modeling, termed theoretical model, aims at explicitly describing the underlying 
physical and chemical processes. The advantage of this approach compared with the data-driven 
models is that the variables incorporated into the drug modeling directly fit to a greater or lesser 
extend to the physiological parameters.  

 

3.2 Theoretical Models 

3.2.1 Pk/PD Models 

 

Pharmacokinetics is dedicated to the study of the concentration of drugs administrated to the body, 
including the processes of absorption, distribution, localization in tissues, biotransformation, and 
excretion 

23
. The mechanisms of Absorption (Drug entering the body) , Distribution (Drug is spreading 

to different areas of the body), Metabolism (Drug is being changed to new chemical compounds) and 
Elimination (Drug is removed from the body) are taken into account and properly modelled. 

PK models: 
o One compartment: The administrated drug is evenly distributed into a single compartment in the 

body, and is eliminated from the body in a first-order fashion. Appropriate for drugs which rapidly 
and readily distribute between the plasma and other body tissues. It has only one volume term, 
the Volume of distribution (Vd). 

o Two compartments: Includes a peripheral compartment into which the drug may distribute. 
Common designations are: 

Comp 1 (central) - blood and well perfused organs, e.g. liver, kidney, etc.; "plasma"  

Comp 2 (peripheral) - poorly perfused tissues, e.g. muscle, lean tissue, fat; "tissue"  

Pharmacodynamics is the study of the biochemical and physiological effects of drugs on the body 
and the mechanisms of drug action and the relationship between drug concentration and effect

24
.  

PD models: 
o The immediate response models (alone or linked to a pharmacokinetic model) 

o The turnover models (only linked to a pharmacokinetic model) 

                                                   
23  http://www.rxkinetics.com/pktutorial/1_1.html 
24 http://www.cop.ufl.edu/safezone/pat/pha5127/multicpt/2-cptmt.htm 

 

http://www.rxkinetics.com/pktutorial/1_1.html
http://www.cop.ufl.edu/safezone/pat/pha5127/multicpt/2-cptmt.htm
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Figure 1. General view of a Ph/PD approach 

 

Such Pk/PD models are used  
Â To provide a simplified description of the observations.  
Â To describe the time course of drug action.  
Â To suggest appropriate doses and dosing intervals  
Â To make predictions of future situations 

 

The effect drug E(t) is expressed as  

E(t)=S(t)+A(t) 

Where A(t) models drug action and S(t) corresponds to the disease model. A(t) is a function of the 
drug concentration C(t), for example in the linear assumption, A(t)=Aconstant*C(t) or Michaelis-
Menten relationship

25
. S(t) can be a constant, a linear or exponential function, etc, modeling the 

disease progress in a relevant manner. The drug concentration corresponding to multiple-day drug 

administration can follow the form ä=

--
Ö=

n

i

ttk DieatC
1

)(
)( , and additionally a second exponential 

factor can describe the clearance of the substance from the blood.  

 

Individual and population based models are considered, and optimization methods are used to 
estimate the model parameters. 

 

                                                   
25

 http://en.wikipedia.org/wiki/Michaelis-Menten 
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Figure 2 from
26

  (Up) Pk/Pd concepts, (middle) Concentration , Multiple dosing of 4g paracetamol with 
4 oral doses of 1g shown as a thick line. The dotted line is a constant rate infusion at a corresponding 

rate. (Down) Michaelis-Menten relationship with response. (PD) 

 

                                                   
26

 http://orbit.dtu.dk/getResource?recordId=228815&objectId=1&versionId=1 
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A well known academic open source application for the analysis of non linear mixed effects models is 
MONOLIX

27
 . Pk/Pd analysis packages are also available in R-package

28
  

NONMEM is a software package developed at University of California, San Francisco (UCSF) for use 
in population PK/PD modelling (Beal and Sheiner;2004), based on ordinary differential equations and 
state-space approaches. 

 

The Pk/Pd approaches can produce very accurate results. However, among the disadvantages of 
such approaches is the need for dense concentration samples, making this approach unrealistic in a 
telemonitoring scenario. 

 

 

Figure 3. a) Monolix interface, b) estimated concentrations 

 
  

                                                   
27

 http://software.monolix.org/ 
28

 http://cran.r-project.org/web/packages/drc/index.html 
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3.3 Data-driven models 

The advances in the area of soft computing, especially the resurgence of artificial neural networks 
and the increasing popularity of fuzzy set theory, have influenced the area of pharmacokinetic and 
pharmacodynamic modeling (Bellazzi, 1992; Veng-Pedersen and Modi, 1992; Bellazzi et al., 1994; 
Brier et al., 1995; Sproule et al., 2002; Gaweda et al., 2003; Guerrero et al., 2003). 

3.3.1 Neural Networks 

The advances in the area of computational intelligence, especially the resurgence of Artiýcial Neural 
Networks (ANN), have inþuenced the area of PK/PD modeling. A number of ANN models for PK/PD 
analysis have been used to address different dose modeling problems (Brier et al., 1995; Veng-
Pedersen & Modi, 1992). The data-driven learning capabilities of ANNs has been proved particularly 
important for the drug-effect modeling (Veng-Pedersen & Modi, 1992). An effective and cost-efýcient 
strategy that allows the prediction of patient response to the drug has been implemented for patients 
with renal failure (Gaveda et al., 2003). The proposed approach is based two different types of ANN a 
multi-layer perceptron network and a radial basis function network that perform drug dose-effect 
modeling. In addition, a neural network model is proposed for dose-response of foodborne pathogens. 
The output of the neural network has one neuron representing the probability of infection, while the 
ingested doses are the inputs along with other factors affecting the probability of infection such as age 
and gender (Xie et al., 2000). 

3.3.2 Fuzzy Models 

The prediction of the pharmacotherapy results is difficult mostly due to the wide range of 
pharmacokinetic and pharmacodynamic variations e.g. gender, age, weight, genetic profile etc. 
(Rowland & Tozer, 1980). In pharmacology, fuzziness and fuzzy logic systems have been applied to: 
a) control mechanical drug delivery devices, b) pharmacokinetic modeling and, c) pharmacodynamic 
modeling. A typical dose-response example using fuzziness would be to cluster output (response) into 
overlapping fuzzy sets that are defined so that the internal distances are minimized and the distance 
between clusters are minimized (Figure 4).  

For example, a fuzzy logic-controller has been used to administer atracurium during surgery, where 
the amount of drug administered is adjusted according to patientôs individual response (Ross et al., 
1997). In addition Dazzi et al. developed a control system using fuzzy logic and neural networks to 
adjust intravenous insulin doses in critically ill diabetic patients (Dazzi et al., 2001). The number of the 
óif-thenô rules is then determined by the number of fuzzy sets [Sproule et al., 2002]. 

 

Figure 4: Responses are clustered into three overlapping clusters such that responses 2 and 3 (R2 
and R3) are each members of two clusters using fuzzy set theory. 

 

Fuzzy logic has also been evaluated on pharmacodynamic modeling through dose-response studies. 
For example, the relationship between clinical variables and dose-response has been evaluated by 
analyzing the association between hemodynamic variables, auditory evoked potentials and the 
inspired fraction of isoflurance (Jensen et al., 1999). In another example, a combined fuzzy linear-
regression method has been used to evaluate the dose-response association between nitrate 
exposure and cancer risk (Lee et al., 2001).  


